Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions.
نویسندگان
چکیده
Recent studies have demonstrated that thymus-derived naturally occurring CD4(+)Foxp3(+) regulatory T cells (Tregs) in human and mouse may be unstable and dysfunctional in the presence of proinflammatory cytokines. All-trans RA (atRA), the active derivative of vitamin A, has been shown to regulate Treg and T effector cell differentiation. We hypothesize atRA stabilizes human natural Tregs (nTregs) under inflammatory conditions. atRA prevents human nTregs from converting to Th1 and/or Th17 cells and sustains their Foxp3 expression and suppressive function in vitro or in vivo following encounters with IL-1 and IL-6. Interestingly, adoptive transfer of human nTregs pretreated with atRA significantly enhanced their suppressive effects on xenograft-vs.-host diseases (xGVHDs), and atRA- but not rapamycin-pretreated nTregs sustained the functional activity against xGVHD after stimulation with IL-1/IL-6. atRA suppresses IL-1 receptor (IL-1R) up-regulation, accelerates IL-6R down-regulation, and diminishes their signaling events as well as prevents the up-regulation of STIP1 homology and U-Box containing protein 1 on Foxp3(+) cells following IL-1/IL-6 stimulation. atRA also increases histone acetylation on Foxp3 gene promoter and CpG demethylation in the region of Foxp3 locus (i.e., Treg-specific demethylated region). These results strongly implicate that nTregs primed with atRA may represent a novel treatment strategy to control established chronic immune-mediated autoimmune and inflammatory diseases.
منابع مشابه
All-trans Retinoic Acid Regulates the Balance of Treg-Th17 Cells through ERK and P38 Signaling Pathway
متن کامل
P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction
Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...
متن کاملRetinoic acid-primed human dendritic cells inhibit Th9 cells and induce Th1/Th17 cell differentiation.
All-trans-retinoic acid plays a central role in mucosal immunity, where it promotes its synthesis by up-regulating CD103 expression on dendritic cells, induces gut tropic (α4β7(+) and CCR9(+)) T cells, and inhibits Th1/Th17 differentiation. Recently, murine studies have highlighted the proinflammatory role of retinoic acid in maintaining inflammation under a variety of pathologic conditions. Ho...
متن کاملDifferential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4(+)CD25(+)FOXP3(+) T regulatory cell subpopulations.
Adoptive transfer of ex vivo expanded CD4(+)CD25(+)FOXP3(+) regulatory T cells is a successful therapy for autoimmune diseases and transplant rejection in experimental models. In man, equivalent manipulations in bone marrow transplant recipients appear safe, but questions regarding the stability of the transferred regulatory T cells during inflammation remain unresolved. In this study, protocol...
متن کاملتاثیر غلظتهای مختلف ال- ترانس رتینوئیک اسید بر رشد و بقای سلولهای بنیادی فولیکول موی موش سوری
Background and Objective: Hair follicle stem cells are multipotent, located in the bulge area, and are highly proliferating. Retinoids have an effect on epidermal differentiation and keratinization. Retinoic acid is used to treat some skin diseases such as Melasma, Acne and Ichthyosis. So, the study of all-trans retinoic acid effect on hair follicle stem cells and determination of the effective...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 33 شماره
صفحات -
تاریخ انتشار 2014